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In order to analyze NMR relaxation data in terms of parameters
which describe internal motion, one must first obtain a description
of the overall tumbling of the macromolecule in solution. Methods
currently used to estimate these global parameters may not always
provide reliable estimates of their values and uncertainties. In this
paper, we present a general data analysis formalism based on
products of Bayesian marginal probability densities which can be
used to efficiently combine the information content from multiple
experiments, such as R;, R,, and NOE data collected at multiple
magnetic field strengths, or data from cross-correlation or rotating
frame relaxation dispersion experiments. Our approach allows the
estimation of global tumbling and internal dynamical parameters
and their uncertainties without some of the assumptions which are
made in the commonly-used methods for model-selection and
global parameter estimation. Compared to an equivalent classical
statistical approach, the Bayesian method not only is more com-
putationally efficient, but also provides greater insight into the
information content of the data. We demonstrate that this ap-
proach can be used to estimate both the isotropic rotational cor-
relation time in the context of the original and “extended” Lipari—
Szabo formalisms [Lipari & Szabo, J. Am. Chem. Soc. 1982, 104,
4546; Clore et al., J. Am. Chem. Soc. 1990, 112, 4989], as well as
the rotational diffusion coefficients for axially symmetric anisotro-
pic tumbling.  © 1999 Academic Press
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INTRODUCTION

prediction of the heteronuclear relaxation rates given a know
edge oflJ(w). However, the inverse problem of learning about
the motions from a knowledge of the relaxation rates is muc
more difficult @, 9). Although it is possible to directly estimate
J(w) based on relaxation dataQ—12, most analyses of NMR
relaxation data assume some functional form Jéw), the
adjustable parameters of which have some intuitive physic:
meaning. The formalism proposed by Lipari and Szabo, know
as the “model-free” approach since it was developed withot
any assumptions of a detailed physical modE3, (14, has
proved to be extremely popular for the analysis of NMR
relaxation datag, 15 and will likely remain ade factostan-
dard method because of its simplicity.

The original form of the Lipari-Szabo formalism contains ar
adjustable parameter for the overall tumbling of the macromol
ecule in solution as well as two parameters which describe tf
spatial restriction and timescale of the local dynamics of
given residue. It is clear that estimation of these paramete
using the traditional three relaxation measuremeRts R,
and NOE at one magnetic field strength) is dangerously clos
to being mathematically underdetermined, particularly fol
these nonlinear models. In practice, most current implement
tions of the Lipari-Szabo formalism estimate the global tum
bling parameter independently at the start of the analysis, at
then use that value to estimate the local dynamical paramete
These methods involve assumptions about the timescales of t
internal motions and their distribution in the protein, which car

Dynamics play a significant role in the biological functionsead to significant errors in estimates of their values and ur
of proteins and other macromoleculés-§, and the sensitivity certainties. This is especially problematic as there exist stror
of NMR to motions experienced by nuclear spins has maggrrelations between the local and global parameter estimats
NMR a powerful tool for the study of macromolecular dynamand this can lead to a propagation of errors in the estimation
ics @, 9. In particular, the dependence of relaxation rates gRe global parameters into the local parameters.

the spectral density(w) of the motion for various relaxation

Furthermore, the Lipari-Szabo formalism has been extende

mechanisms is well knowr#(6, 7), allowing straightforward i, yarious ways, increasing the potential number of unknow
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local dynamical parameters from 2 to B).(Clearly, it is not
mathematically possible to fit all of these parameters usin
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three relaxation measurements. Therefore, existing analysisduct of factors which depend only on the overall motion an
methods select a subset of three or fewer of the possilhe internal motion, respectively:

parameters which adequately fit the data. Generally, only a

single such subset is selected, even though the data may be C(t) = Co(H)C,(1). [1]
equally well fit by different models with different ranges of

motional parameters, or may in fact result from a compleﬂ]_ is true if th Il tumbling is isotrobi di
motion requiring more than three motional parameters for i IS 1S true T INe overall umblng IS 1SOtropic and 1S uncorre-
lated with the internal motion1@). If the overall tumbling is

complete description. : . . N
One way in which these shortcomings can be avoided is Weed isotropic, theo(t) is given by

the use of more relaxation measurements. In fact, recent studies

of protein dynamics by NMR relaxation are making increasing Colt) = = exp( _ ) 2]
use of relaxation data collected at two magnetic field strengths © 5 Tm)

(e.g., 6—20Q). Since the implementations of the Lipari—-Szabo

formalism currently in use were developed when the measugsere 7, is the rotational correlation time. Furthermore, it is
ment of only three data was routine, it is not clear that they akgsymed that the correlation function for the internal motio
making the most efficient use of all of the available informatiopy, e approximated by a single decaying exponential with

in this larger amount of data. Furthermore, new experimenise constant of. and decays to a value & ast — o:
based on cross-correlated relaxatid?l{2§ and rotating-

frame relaxation dispersior27-3Q are being developed and
refined, and it would be desirable to have a general formalism C(t) =S+ (1— Sz)exp< — t) _ [3]
which would allow the unified analysis of data from such T
experiments. Also, the need for more quantitatively reliable
model-free parameter estimation has become imperative ndhus, in the Lipari—-Szabo formalism,
that the interpretation of model-free parameters has moved
beyond its original use as a qualitative description of backbone .
dynamics to more quantitative applications such as the estima- J(w) =2 J cod wt) Co(t)C (1) dt
0

€

tion of thermodynamic parameter31-33 and the analysis of
changes in dynamics due to ligand binding and complex for-
mation 6). 2[ S?r, (1- Sz)ﬂr]

- 1+ w272m 1+ w?r?

In this paper, we present a novel approach to the estimation of 5
dynamical parameters based on products of Bayesian marginal
probability densities which takes full advantage of the informati(w
gl

(4]

-1 -1 -1 ;
. . . . erer ' = 7.' + 7,,". The generalized order paramet&'s
content of relaxation data collected at multiple fields, is gene ° " g P

. . _can be interpreted as a measure of the spatial restriction of t
enough to allow the incorporation of data from novel relaxamoltaternal motion, and the effective correlation time as a
experiments currently being developed, and avoids the prObleméasure of the, timescale of the internal motid)( In the
inherent in the “traditional” model-selection approaches curren se of an internuclear vector oriented at an argwith
in use. Previously, Jirt al. (34, 35 described how traditional respect to the symmetry axis of a molecule undergoing axiall
analysis methods could seriously underestimate the uncertain, metric anisotropic diffusion with tumbling parametérs
in the extracted model-free parameters, and proposed a graphcll D ., Schurret al. (36) have established conditions under
method for the analysis of NMR relaxation data. However, thWhi ch J,(w) can be written in the form
analysis method could only be applied to the simplest form of the
Lipari-Szabo formalism and assumed that the global tumbling

correlation time was knowa priori. The approach presented here 22 S*r, (1-S¥7]
can be viewed as a natural generalization of the graphical analysis Jw) =¢ E Aj[ 1+ 0% Iy w?r? | (5]
method and allows the estimation of the global tumbling correla- 1=0

tion time and the use of the full Lipari-Szabo formalism, while
also retaining the ability to accurately characterize the uncertamhereA, = ; (3 cog6 — 1)?, A, = 3 cos0 sin‘e, A, = 3
ties in the extracted model-free parameters. sin'g, 1, = (6 — j)D, +j’°D,, andr| ' = 1.* + 7, *. This
equation is an extension of the well-known expression for th
spectral density of rigidly tumbling anisotropic ellipsoi87j.
THEORY The commonly measured relaxation data farl—"H spin
pair undergoing dipole—dipole and chemical shift anisotrop
In the Lipari—-Szabo model-free formalism, it is assumed th&@CSA) relaxation in the absence of cross-correlation can the
the total time-correlation functioiC(t) is separable into a be computed using the well-known expressions
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d2 TABLE 1
Ri=" [J(oy — wy) + 3(wy) Nomenclature for Subsets of Regression Variables
A Zwﬁ Model Regression variables
+ 6J(wy + wy)] + —5— J(wy) [6]
3 1 S (1e=0,Re = 0,5 = 1)
42 2 &, 1R = 0, S = 1)
R, = g [43(0) + J(wy — wy) + 33(wy) + 63(wy) : AR il A
Azwﬁ 5 S, Tersf(Rex: O)
X [43(0) + 3I(wp)] + 0FPe [7] somewnhat firmer footing through its quadratic dependence ¢
the spectrometer frequency, as indicated in Eq. [7], wher
and R = wi®e (38,39, through the observation of the RF
field-strength dependence of rotating-frame relaxati-80),
q2 or through the dependence of the appafnbn the length of
NOE = 1 + (VH> —— [6J(wy + wy) — oy — oy)], the CPMG delay Z0). Furthermore, it is occasionally neces-
/ARy sary to invoke motion on two widely-separated time scales t

[8] adequately fit the data, resulting in the so-called “extende

model-free” spectral density of Cloet al. (40),
whered = y,y\huo/87°r 3y, A is the™N CSA, andd., is the

field-independent portion of the contribution ®, due to 2 2
. . . 2 St (1-S97

chemical exchange. We should emphasize that the Bayesian Jw) == S? — |, [9]
formalism described below is in no way limited to the analysis 1toirn 1+t
of N relaxation data, or to the Lipari-Szabo formalism, but
can make use of other models fd(w) and can be easily whereS® is the order parameter for the slow moti@i,is the
extended to make use of other relaxation data. order parameter for the fast motion, amdis the effective

It should be made clear that the validity of Eq. [4] dependsorrelation time for the slow motion (the fast motion is as-
only on the assumptions mentioned above, namely, that themed to be in the extreme narrowing limit). It should be note
overall tumbling is isotropic and stochastically uncorrelateithat Eq. [9] departs from conventional notation in order tc
with the internal motion, and that the internal motion is wekmphasize its relationship with the original Lipari—-Szabo spec
approximated by a single decaying exponential. Despite pdpal density of Eq. [4].
ular misconceptions, the derivation of Eq. [4] by Lipari and The current standard implementations of the Lipari—Szab
Szabo makes no assumption about the timescale of the intemggbroach 41-43 share the following overall strategy: (1) the
motion, and for isotropic overall tumbling it is valid fany correlation time for overall tumblingr(,) is estimated from
value of ., including 7. = 1, although the estimation of, values of the ratidR,/R; for a selected subset of the residues
values in that regime becomes difficult and requires extreméR) nonlinear least-squares fits to the observed relaxation de
precise data3p). The origin of this misconception appears tare performed using various subsets of the possible regressi
be the inclusion by Lipari and Szabo of simplifications of thewariables (Table 1), (3) model-selection criteria are used t
main result {3, Egs. [35]-[36]) which are only valid it, < decide which choice of regression variables is appropriate fc
Tm, @S Well as their discussion of the difficulties which arise #ach residue, and (4) the valuemgfmay be re-optimized using
there are multiple internal motions on a timescale close to ttiee selected models. The uncertainties in all of the estimate
overall tumbling. However, in the absence of such multiplearameters are then determined by classical Monte Carlo err
internal motions, Eq. [4] is valid for any timescale motion aanalysis. The use of tHe,/R; ratio to estimate the correlation
long as its correlation function can be well approximated bytane for overall tumbling in the context of the Lipari-Szabo
single decaying exponential. The effect of slow motions in tfermalism was first proposed by Kagt al. (44) in their
case of anisotropic tumbling is less straightforward and will kenalysis of °N relaxation data from staphylococcal nuclease
considered below. For the subset of residues which have motions only in th

It has been observed that not all macromolecular NM&xtreme narrowing limit (i.e. residues which satisfy model 1)
relaxation data can be fit well to the simple Lipari-Szabihe ratioR,/R, will be independent o5’ and therefore will
spectral densities. In particular, it is sometimes necessarydepend only orr,,. This is due to the fact that bofR, andR,
account for contributions to the transverse relaxation Ryte are linear functions o8(w), andJ(w) is proportional toS’ if
due to chemical exchange effects by adding a phenomenoleg= 0 (Egs. [4], [6], and [7]). Based on the experimentally
ical R, term to the predictedR,. This effect can be put on measured NOE values for staphylococcal nuclease,d{a&.




DYNAMIC PARAMETERS FROM NMR RELAXATION DATA 411

1.0 - Such inaccurate estimates=mf can have significant effects on
the model selection, as has been observed in the analysis
protein N relaxation data. In our experience, changes,iof
<10% are sufficient to cause the appearance or disappearal
of R,, terms, as well as other changes in the “best fit” mode
(e.g., Table 3 of Li and Montelione4?)). In particular, the
underestimation of,, can lead to the appearance of inaccurat
o R., terms (see below).

vy The combined effect of,, uncertainty and model selection
‘,/’ can be even more insidious. For example, ifilivalues in a
10% range as described above were in fact consistent with tl
data, then one would not be able to decide conclusivel
b whether the data for a given residue was better fit by model
10.0 | or model 3, since different values ef, in that range would

\ lead to a different inference about the presence of an exchan
h i contribution. It is clear that in such a situation the uncertainty
8.0 M\ — ] in 7, would be propagated into an uncertainty in the mode
) - T choice, and therefore the selection of a single “best-fit” mode
sol e T ] can result in the underestimation of the uncertainty in the
' e e model-free parameters. Such model-selection uncertainty is n
considered in current analysis methods. This may be due to tl
40 ‘ 1 ‘ — ] fact that the concept of model uncertainty, although intuitively

00 2o 40  n9) 60 80 00 reasonable, does not arise naturally in classical statistics.

NOE

R,/R,
|
|
|

FIG. 1. The dependence of the NOE (a) aRg/R, (b) on 7., calculated STATISTICAL BACKGROUND AND

using Egs. [4]-[7] assuming a spectrometer frequency of 600 MHz, an
isotropic rotational correlation time of 10 ns, aB&values of 0.8 (solid line), COMPUTATIONAL METHOD

0.7 (dashed line), and 0.6 (dot-dashed line). ) ) o
As was alluded to in the Introduction, the problems arising

from model selection and the estimation of the global tumblin

(44) pointed out that the second-containing term of Eq. [4] parameters could be avoided by the measurement of a suf
could be neglected after eliminating obvious outlier residuegent number of relaxation data and fitting to the most gener:
with anomalousR, values due to chemical exchange antbrm of the Lipari-Szabo model. In principle, such data anal
residues undergoing complex dynamics near the N- and ¥&is could proceed along either a classical or a Bayesic
termini. statistical route. For example, if one wished to treat the prok

This assumption is often valid for a subset of the residueslem classically (i.e., where the data are considered to be ra
a given protein. However, if it is assumed that the choice dbm variables and the parameters are unknown states of natt
model is unknowra priori, then the use of th®,/R; ratio to (48)), one could easily obtain the maximum likelihood esti-
estimater,, constitutes aad hocassumption, since we have namates for the local dynamical parameters for each residt
guarantee that removing the obvious outliers or residues witbhnditional on some value for,. If one assumes that the
R,/R; outside of one standard deviation of the mean wilincertainty in each data point is normally distributed, then thi
remove all nonmodel 1 residues. Indeed, in some systems thai@ximum likelihood estimate is simply the parameter value
may be no residues which are accurately described by modelhich minimize the weighted sum of squared residuals witl
This problem has recently been recognized in the literaturespect to the data. One could then find the value,ofthich
(45, 49. In particular, Yacet al. (46) have proposed an itera-simultaneously minimizes the total of the conditional sum o
tive scheme to determine a lower bound on the NOE value fequared residuals for all residues using a one-dimension
residues to be used fa, determination, in an effort to excludeoptimization algorithm 49).
residues with significant, contributions. However, it is clear The uncertainties in the estimated dynamical paramete
from the dependence of the NOE ap (Fig. 1a) that one (including 7,) could then be estimated by performing a clas-
obtains nearly identical NOE values both with~ 0 as well sical Monte Carlo error analysis procedure, where one woul
as with ., = 4 ns (givent,, = 10 ns). Thus, one cannotrepeat this optimization procedure for many random data se
definitively exclude the presence of larggcontributions on generated using the assumed noise distribution. However, sin
the basis of the magnitude of the NOE. Furthermore, it is clegy, is aglobal adjustable parameter, one can no longer perforr
that the presence of such largecontributions will reduce the the error analysis residue by residue. Instead, one would ha
value ofR,/R;, causingr, to be underestimated (see Fig. 1b)to generate data sets correspondinglt@f the relaxation data
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for the entire protein. A large number of Monte Carlo samplders in a way that is both computationally efficient and provide
would be required in order to adequately cover this very higtonsiderable insight into the information content of the data.
dimensional parameter space, making a purely classical apin this paper, we test this strategy for the extraction o
proach very computationally demanding. dynamical information from NMR relaxation data. For sim-
A Bayesian version of this strategy is not only more conplicity, let us first consider the original Lipari-Szabo spectra
putationally efficient, but also provides more insight into thedensity (Eq. [4]). Using synthetic®N relaxation data, we
information content of the data. Since Bayesian statistiogénerated Monte Carlo samples from the joint posterior prot
methodology allows us to speak of the probability of a parti@bility density calculated using the Bayes theorem from th
ular set of parameter values given the d&®@, 61, we save a likelihood of the data and the prior probability of the param-
considerable amount of computational time by performingters:
Monte Carlo sampling in th@arameterspace instead of the
data_space. Sl_Jch sgmpling algorithms do not _require repeatetp (2, ., Ry, 7./R)
nonlinear optimizations, and therefore avoid convergence
problems which sometimes arise with such algorithms. Fur- % P(R|S? 7o, Rew o) P(S? Tey Rexy 7). [10]
thermore, we can construct the overall solution based on the
contributions from individual residues using the well-estatFhe likelihood of observing the data Rt for a given residue
lished methods of probability theory. This allows us to moregiven that the underlying dynamic processes are described |
easily assess the relative information content of the data fbe given values o8’, 7., R, andr, is given by
each residue and more easily identify outliers due to systematic
errors in the data or model inadequacy. P(R|S?, Te Rex Tm)
A Bayesian version of the classical algorithm proposed
above would begin by estimating the “local” joint probability " 1 — (R; — R{f#9)?
densityP(S?, 7., Re, SF Tw|R)) for all of the parameters (in =11 Pro? exp[ 202 ] ;[
this case for the “extended model-free” spectral density) based =1\ ! !
on the relaxation dat®; for residuei. By fitting to the most
general form of this set of nested models, we avoid making amperen is the number of relaxation data per residgg,is the
implicit model selections. Obviously, we must have at least #§ “observed” relaxation value (i.&;, R,, or NOE) for the
many data points as adjustable parameters if this local joift residue,R{™ is the jth relaxation parameter calculated
probability density is to provide an informative paramete4sing the given values &, 7., Re, andr,, and gy is the
estimate, but due to experimental uncertainties and the nonfitiicertainty in theth “observed” relaxation value for thigh
earities of the model function it is desirable that the fit beesidue. The prior probabilip(S*, 7., Re,, 7r) was taken to be
overdetermined. In this paper, we make useRef R,, and €qual to one in the region€ S* < 1,7,=0,R,, =0, 7, >
NOE data collected at multiple magnetic field strengths. & and zero outside of this region. In principle, this prior coulc
practice, we have found that six data points collected at sufficlude information obtained from other sources, suctiRas
ciently different fields (e.g., 400 and 600, or 500 and 800 MH#)formation obtained from rotating frame relaxation measure
provide good local parameter estimates, but that as few as flaents £7-30. Equation [10] contains a proportionality sign
measurements;, R,, NOE, n,,, andn,) at one field strength since we have not normalized the posterior probability by
(25) is also sufficient. dividing by the marginal likelihood of the datdq, 50. The
We can enforce the condition that is a g|0ba| parametex Monte Carlo was performed using the Metropolis algorithn"
posterioriby “integrating out” all of the local parameters, andvith an iteratively adjusted proposal distribution using the
multiplying the resulting marginal probability densitiesKRambasoftware package as described in detail by Andrec an
P(t./R)) for all residues. It is interesting to note that somePrestegard58). For purposes of simulation, we have choser
earlier applications of the Lipari—-Szabo formalism to proteiff; to be 5% ofR; for all of the calculations described in the
dynamics have in fact proceeded in precisely this manner, f§flowing sections. Based on these Monte Carlo samples, or
attempting to treatr, as an adjustable parameter on equ&Rn obtain an estimate of the marginal density,pfor theith
footing with S* and 7, (52-59, while others have made use offesidue
the sum of squared residuals surface or other graphical meth-
ods 66, 57). This work extends these approaches by making
full use of the information contained in the weighted sum of P(1yR) = f P(S? 7e Rey Tm|R)ASMdT AR, [12]
squared residuals surface, which is simply the negative of the
logarithm of the Bayesian posterior probability under a uni-
form prior (see Egs. [10]; [11] below). By recognizing this factby estimating the one-dimensional probability density base
we can bring to bear the full power of probability theory t@nly on the 7, coordinates of the Monte Carlo samples
make statistical inferences about the global and local paran(®9, 60. Analogous procedures could be used for both axially
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TABLE 2
Parameters and Synthetic Data Used for the Determination of 7,,*

Residue number

1 2 3 4 5 6
S? 0.84 0.64 0.71 0.79 0.62 0.82
7o (NS) 1.0 2.3 0.0 0.5 2.4 15
Re (57H° 0.0 0.0 1.0 0.5 3.1 1.2
R, (5% @ 500 MHz 1.79 2.15 1.24 1.70 2.18 1.87
R, (s') @ 800 MHz 1.10 1.49 0.65 1.02 1.52 1.18
R, (s) @ 500 MHz 11.79 10.10 10.65 11.57 13.04 12.88
R, (s @ 800 MHz 14.50 12.29 14.47 14.86 20.02 17.43
NOE @ 500 MHz 0.549 0.602 0.805 0.276 0.605 0.616
NOE @ 800 MHz 0.695 0.771 0.855 0.425 0.774 0.754

2 The synthetidR,, R,, and NOE relaxation data were calculated using Egs. [4], [5], [6], and [7] with@f 10.0 ns and the values &f, 7., andR,, listed
in the table.
 We defineR,, to be the value ofsi®., at a proton frequency of 500 MHz.

symmetric anisotropic diffusion (Eq. [5]) or the “extendedheed not occur at the same valuergfif the former contains
model-free” spectral density (Eq. [9]). In the former case, thesggnificant nonlinear correlation$§). As expected, however,
are two global parameterdD( and D,), and therefore the theP(r,|R;) do converge to sharp distributions centered at th

required marginal densities are bivariate. “correct” value of 10.0 ns as the uncertaintigsapproach zero
(data not shown).
RESULTS AND DISCUSSION Sincer, is a global parameter, it must have the same valu

for all residues. We can impose this constraint by taking th
1. Isotropic tumbling using the original Lipari-Szabo specproduct of P(7,|R;) over all N residues:
tral density. Synthetic N relaxation data at two field
strengths (500 and 800 MHz) were generated using the param-
eters summarized in Table 2. In particular, since latgelues N
can severely limit the precision of Lipari-Szabo parameter P(7a[R) H P(7alR).
estimates 34, 35, we have included values in the 1-2 ns e
range in order to test the robustness of our methodology in this
regime. These data were then used to generate Monte Cait® probability density ofr, obtained by multiplying the
samples from the “local” joint probability densities as dekernel density estimate points of Fig. 2 is shown in Fig. 3
scribed above. The resulting marginal probability densiti&&us,P(7,|R) constitutes the estimate of the valuemfand
P(.|R) are shown in Fig. 2. It is apparent from the widths oits uncertainty given the experimental data. Again, because
the distributions that these “local,, estimates are of quite the nonlinearities in the model, the mode of the resulting
variable precision, with some residues (such as 1, 3, and3tribution need not occur at 10.0 ns. However, the results ¢
having fairly narrow distributions and thereby providing conindicate that ar,, of 10.0 ns is highly probable.
siderable information regarding the value %f while others  Although this is not a feature of the synthetic data used her:
(such as residue 5) are quite broad and provide very fifle it should be recognized that systematic error in the relaxatio
information. This insight into the relative information contenmeasurements, more complex internal motions, or rotation
of the data for various residues with respect to the estimatianisotropy could result ifP(7,|R;) distributions which are
of ,, is something which would not be readily available froomutually inconsistent. Such inconsistency could be used as
the classical parameter estimation procedure outlined aboviadicator of such effects and is another example of insight int
The resulting “local’r,, distributions in several cases do nothe data that could not have been easily obtained using classi
have their modes at the, value (10.0 ns) used to generate thparameter estimation methods. In practice, one could confir
synthetic data, particularly for residues with substantial that an inconsistency if, is due to anisotropy by observing a
contributions (such as residue 2), although in all cases tberrelation between the, values and the relative orientations
“correct” T, value is near the maximum of the posterior probef the amide bond vectors as determined from suitable X-ra
ability density. The fact that the modes are not at 10.0 ns is roystal or NMR solution structures3§). However, it is also
unexpected, since Eq. [4] represents a highly nonlinear modabssible that systematic errors in relaxation measurements
Furthermore, the modes &(S’, 7., Re,, Tm|/R)) andP(7,|R;) ill-determined relative amide bond orientations may not resul

[13]
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FIG. 2. The “local” marginal probability densitieB(,|R;) calculated using the relaxation d&afor each of the six residues shown in Table 2. The curves
were calculated using a univariate Gaussian kernel density estirb8idrqm Monte Carlo samples using the “maximal smoothing” window wi@®) (A total
of 120,000 Monte Carlo samples were generated usiRgmbo.of which every eighth sample was used for the probability density estimate.

in a detectable deviation in the local, estimates. In such probability density ofS?, ., andR,, for each residue. This is
cases, it may still be possible to detect such errors throughl@ne by generating Monte Carlo samples from the “global
residual analysis in which the observed data is compared to bt density
distribution of data values back-calculated fr&{(S’, 7., Re,,
Tm|Ri)' L . . P(Szr Ter Rexv Tm|R)

Once the local distributions for the tumbling parameter have
been constructed, they can then be used to determine the % P(S? Te, Rey Tl R)IT P(mu/R)T  [14]

j#i

P | ﬂ for the local parameters of residuge where the quantity in
square brackets represents the information abguontained

7 A\ in the otherN-1 residues. Since model selection in the tradi-

- 7 \K tional analysis procedure consists of determining whether the

is a significantr, or R, contribution, we have plotted the
& results as bivariate marginal densitiesrpndR,, in Fig. 4. In

m

P(t_|R)

: all cases, the probability densities of the local parameters a
quite well-determined. The precision of tRg, estimate could
/ \ be further improved by collecting additionB}, data at a third
field strength, if that is practical. It is clear that for residues 4
ot 5, and 6 most of the probability mass is located well away fron
80 85 90 95 100 105 11.0 115 120 either ther, = 0 or theR,, = 0 axes, confirming that they are
T_ (ns) well fit by model 4 ¢. # 0 andR,, # 0). Residues 1 and 2, on
the other hand, have most of the probability mass lying at th

FIG. 3. The circles represent the productsRfr,|R)) (Fig. 2) fori = B . - .
1,..., 6 evaluated at, increments of 0.08 ns. The solid line is theRex = 0 axis, but well separated from the = 0 axis, con-

least-squares-fit Gaussian, having a mean of 9.86 ns and a standard devidtiéRing that they can be fit to model z(# 0 andR., = 0).
of 0.33 ns. Similarly, residue 3 has most of its probability mass lying at
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FIG. 4. Monte Carlo samples generated from the probability density of Eq. [14] o&éRegmbadfor each of the six residues of Table 2. A total of 120,000
Monte Carlo samples were generated, of which every eighth sample is shown. Each panel corresponds to a projection of the Monte Carlo sampleR.0nto |
plane and is a representation of the marginal probability defity, R../R).

ther, = 0 axis, but away from thR,, = 0 axis, confirming that 2. Anisotropic axially symmetric tumblinglt has been

it is well fit by model 3 ¢. = 0 andR., # 0). However, it is noted in the literature that the presence of anisotropic tumblin
also clear that in all cases there is significant probabiligan have insidious effects on the extracted motional paramete
density away from the, = 0 andR., = 0 axes. Therefore, if the data are fit using an isotropic mod&6( 62—64. One
rather than stating that a certain residue (e.g. residue 1)nmigthod that has been proposed for the identification of suc
“model 2,” one may wish to simply report th&., is most effects involves estimating a “loca#’, independently for each
likely less than 0.758 and thatr, lies between 0.5 and 1.5 ns.residue using the spectral density of Eq. [8p(63, as we
Such upper and lower bounds can be estimated visually lmave done in Fig. 2. However, our approach can be easi
determined automatically from the Monte Carlo samples usiegtended to directly estimat®, andD, using Eg. [5] if we
nonparametric statistical methods8( 6J). Alternatively, one assume that the diffusion tensor orientation is known. It shoul
could also describe the results in terms of a mixture of tradie noted that the derivation of Eq. [5] by Scheitral. (36)
tional models, for example, 80% probability of model 2 andssumes that the internal motions occur on a significantly fast
20% probability of model 4. Although one could proceed as time scale than the overall tumbling. Although a rigorous
the traditional approach and reestimate the local paramettstorization of the correlation function along the lines of Eq.
while holding r, and/orR,, fixed at zero, this is not necessary[1] for anisotropic tumbling is not possible in generaB( 36,
and may underestimate the true uncertainties by eliminating have found that Eq. [5] is able to estim&eto within 5%
model-choice uncertainty. accuracy from synthetic data generated with the anisotrop
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TABLE 3
Parameters and Synthetic Data Used for the Determination of D, and D, *®

Residue number

1 2 3 4 5 6
S? 0.84 0.64 0.71 0.79 0.62 0.82
7o (NS) 1.0 2.3 0.0 0.5 2.4 15
Re (57H° 0.0 0.0 1.0 0.5 3.1 1.2
6 30° 70° 50° 40° 35° 60°
R, (s') @ 500 MHz 1.18 1.86 0.81 1.16 1.77 1.44
R, (s') @ 800 MHz 0.76 1.31 0.42 0.73 1.27 0.94
R, (5 @ 500 MHz 20.84 14.10 16.31 18.93 19.36 18.55
R, (s') @ 800 MHz 26.34 17.52 21.89 24.51 28.28 24.87
NOE @ 500 MHz 0.438 0.594 0.814 0.047 0.596 0.578
NOE @ 800 MHz 0.638 0.772 0.858 0.263 0.776 0.739

®The syntheticR,, R,, and NOE data were calculated using Egs. [5], [6], [7], and [8] With= 0.016 ns* andD, = 0.008 ns* and the values o8’
Te, Rey, @and o listed in the table.
® We defineR,, to be the value ofsid,, at a proton frequency of 500 MHz.

diffusion-in-a-cone modell@3, 65, 6§ with internal motional constraint thaD, andD , must be equal for all residues, the
correlation times in the range of 8 7., = (3 D)) * in the resulting global probability densiti?(D,, D ,|R, 6) is shown
limit D, > D, (data not shown). These results show tha Fig. 6. It is clear that although the information content in the
internal motional parameters extracted using Eq. [5] can Data for each residue is insufficient to estimteandD , with
meaningful even ifr, is not much smaller than the correlatioradequate precision, the superposition of the information fror
times for the overall tumbling. Therefore, as in the isotropiall residues affords a reasonably precise estimate which is al
example above, we have chosen to wsgalues of 1-2 ns in accurate when compared to the valueDofandD , used to
order to validate our formalism in this regime. generate the synthetic data (0.016nsnd 0.008 ns', respec-
We proceeded in an analogous manner, using synthetic di@tely). It is interesting to note that the estimatedafandD ,
for a protein with an anisotropic diffusion tensor (Table 3) to
compute Monte Carlo samples from the joint den§itg’, 7.,

. L . S 0.0150 F
Reo Dy, D |R;, 0). The resulting bivariate marginal densities :
P(D,, D.|R,, 6) are shown in Fig. 5. If we impose the E
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FIG. 6. A density plot of the two-dimensional histogram obtained by
FIG.5. Monte Carlo samples generated from the probability def®(8f,  binning the Monte Carlo samples froR(S?, 1., Rex, D;, D, |R;, 6) shown in
Ter Rew Dy, D, |R;, 0) using XRamboand relaxation dat&; for each of the Fig. 5 and multiplying the resulting bin counts for= 1, ..., 6. The result
six residues shown in Table 3. A total of 400,000 Monte Carlo samples wessan approximate representation of the global parameter estit(ateD | |R,
generated for each residue, of which every eighth sample is shown. Each pa#)elThe dotted lines denote the values®f andD, used to generate the
corresponds to a projection of the Monte Carlo samples ontBthB , plane synthetic data (Table 2), and the solid gray line corresponé@s te D, (i.e.,
and is a representation of the marginal probability derB{f,, D,|R;, ).  isotropic tumbling).
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FIG. 7. Monte Carlo samples generated from the probability der{&, 7., R.., S7, T»|R) with XRambousing synthetic data for a single hypothetical
residue R;, R,, and NOE data were generated at spectromitdrequencies of 400, 600, and 800 MHz using the param&ers 0.84, 7, = 1.0 ns,R.,
=0.0s", S =0.87, andr, = 10.0 ns R, = 2.08, 1.26, 0.95%; R, = 9.92, 10.85, 12.6173; and NOE= 0.497, 0.601, 0.695 for 400, 600, and 800
MHz, respectively). A 5% relative error in each relaxation value was assumed. A total of 120,000 Monte Carlo samples were generated, of whitithever
sample is shown. Each panel corresponds to a projection of the full set of Monte Carlo samples onto a plane corresponding to each pair of paramet

are not independent, but are approximately linearly correlatan of P(S?, 7., Re,, Sf, Tm|Ri) for one set of synthetic data
Furthermore, in this particular case the uncertaintie3 imnd generated using & value of 1.0 ns (at &,, of 10 ns) (Fig. 7).
D, are large enough that one cannot unambiguously elimin&#ce in this case, is sufficiently greater than zero, it is not
the possibility of isotropic tumbling (Fig. 6), despite the fachecessary to reparameterize the model. The resulting margir
that the “true” anisotropy is quite larged(/D, = 2). The density ofr, (which corresponds to the width of the “cloud” in
interpretation of relaxation data in terms of Bayesian probthe left-most column of plots in Fig. 7) is quite narrow,
bility densities allows the use of products of marginal densitig®nsidering that it is derived from relaxation data for only one
to efficiently estimate globdd, andD , values. This representsresidue. A typical protein will likely have a number of residues
a significant improvement over classical statistical methodgich will allow similarly narrowr,, estimates. As before, if
and circumvents the requirement for criteria which attempt the resulting?(r,,|R;) distributions have modes at nearly equal
exclude residues which have internal motion outside of th@lues ofr,, then the globat,, estimateP(r,|R) will be even
extreme narrowing limitZ5, 62, 64, 6. narrower. Correspondingly, if the modes do not occur at nearl
3. Isotropic tumbling using the “extended model-free’equal values ofr,, then this may be evidence for systematic
spectral density. Although the application of our approach teexperimental error or the violation of the assumption of
the “extended model-free” spectral densiy)(is in principle single global dynamic parameter.
identical to the examples shown above, problems can arise infhe projections of the five-dimensional probability distribu-
practice because one cannot unambiguously estimate valuegifor onto planes corresponding to each of the 10 possib
both S* and S? as 7, approaches zero, sin@ loses physical orthogonal two-dimensional “viewpoints” shown in Fig. 7 pro-
meaning in that limit. This is not a substantial problem, howides a clear way to visualize the correlations among th
ever, sinceP(7,/R;) can still be correctly estimated if themodel-free parameters. First of all, it is clear thaandR., are
model is reparametrized so that one estimates the pr&8gt linearly correlated, resulting in small nonzeRg, contributions
It should be noted that this is not a shortcoming of our forma&t smaller values of,,. This is a clear example of the model
ism, but rather is a reflection of the underlying physics. Tancertainty and correlations among the local and global pe
demonstrate the feasibility of our approach for handling thameter estimates discussed above. Furthermore, it is al
extended model, we show the results obtained for the estina@parent that-, and S° show a positive and negative linear
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FIG. 8. The local marginal probability densiti€{r,|R;) calculated using the relaxation d&afor helix 1 (residues 2-18) of the protein S108Bj (K. G.
Inman and D. J. Weber, unpublished data). A total of 19,500 Monte Carlo samples were generated for each residue using a “slicing lganitéitihé curves
were calculated as in Fig. 2. Data for residues 7, 8, 11, 16, and 18 were unavailable due to spectral overlap, and the joint diB(EutigrR.,, 7,|R;) for
residues 12 and 15 were unbounded with respeet t;md were eliminated from the analysis.

correlation, respectively, with,,. Thus, by underestimating the 4. Application to experimental data.ln order to demon-
uncertainty int,, either by artificially fixing its value at the strate the applicability of our method using experimental datz
value determined fromR,/R; or by forcingR., = 0 by choos- we have performed a local, analysis for the first helix of the
ing regression model 5, the true uncertaintyimandS* would  protein S100B6g). S100B@Bp) is a dimeric C&"-binding pro-
be significantly underestimated. This is particularly apparenttéin (91 residues/monomer) which has been implicated in tt
we consider the dotted line at, = 9.0 ns. In this case, we neuropathologies of Down’s syndrome and Alzheimer’s dis
cannot obtain a good fit to the data unless we allow a small lrdse §8), and the structure of which has been determined b
finite R, contribution of 0.5 §'. Had we forcedR,, = 0 by NMR methods §9). R,, R,, and NOE data obtained at 400 and
choosing regression model 5, we would have been misled if8®0 MHz (K. G. Inman and D. J. Weber, unpublished data
a smaller uncertainty for,,, sincer,, values less thar-9.0 ns were analyzed as described above using the original Lipar
are inconsistent witlR., = 0. Also, we would have underes-Szabo spectral density includirRy, (Egs. [4] and [12]). The
timated the uncertainties i8* and r. by partially eliminating calculation required approximately 60 s of CPU time pel
values ofr, < 1.0 ns andS’ > 0.85 due to thecorrelations residue on an SGI R10000 computer. The results forsthe
among the dynamical parameters. distributions in helix 1 of S10088B) are shown in Fig. 8. All
Based on these observations, it is clear that the traditiomamaining local dynamical parameter estimates were withi
model-selection strategy can lead to a serious underestimatabysically reasonable rangeS?(~ 0.8-0.95,7, < 300 ps,
of the uncertainties in the dynamical parameters due to tRg, < 1.5 s* at 400 MHz). With the possible exception of
neglect of ambiguities in model choice. By fitting to the mogsesidues 3 and 17, the marginal, distributions are quite
general model, one can avoid explicit model selection amdnsistent, with an apparent of approximately 8 ns, which is
thereby avoid this problem. Furthermore, the concept of modelhsonable for a 182-residue protein. It should be noted th
uncertainty arises quite naturally in Bayesian statistics, and wes apparentr,, need not correspond to a global, since
can use the concept of model uncertainty to describe the res@i90B(3) may have nonnegligible anisotropy. However,
of such a general fit. In fact, Bayesian methods allow theen for a significantly anisotropic protein, the apparepnt
extension of this concept to situations in which the models avalues in a given helix should be nearly equal, since all of th
not nested and no such “most general model” exist3. ( amide vectors point in approximately the same directied).(
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The small deviations that are seen, such as those for residuesadism described here to more experimental data and to in
and 17, may be due to experimental errors in the relaxatipfement these methods in a practical, user-friendly softwal
data or more complex dynamics at the ends of the helppackage for use by the NMR spectroscopy community.
Similar consistent behavior is observed for the other helices in
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