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In order to analyze NMR relaxation data in terms of parameters
hich describe internal motion, one must first obtain a description
f the overall tumbling of the macromolecule in solution. Methods
urrently used to estimate these global parameters may not always
rovide reliable estimates of their values and uncertainties. In this
aper, we present a general data analysis formalism based on
roducts of Bayesian marginal probability densities which can be
sed to efficiently combine the information content from multiple
xperiments, such as R1, R2, and NOE data collected at multiple
agnetic field strengths, or data from cross-correlation or rotating

rame relaxation dispersion experiments. Our approach allows the
stimation of global tumbling and internal dynamical parameters
nd their uncertainties without some of the assumptions which are
ade in the commonly-used methods for model-selection and

lobal parameter estimation. Compared to an equivalent classical
tatistical approach, the Bayesian method not only is more com-
utationally efficient, but also provides greater insight into the

nformation content of the data. We demonstrate that this ap-
roach can be used to estimate both the isotropic rotational cor-
elation time in the context of the original and “extended” Lipari–
zabo formalisms [Lipari & Szabo, J. Am. Chem. Soc. 1982, 104,
546; Clore et al., J. Am. Chem. Soc. 1990, 112, 4989], as well as
he rotational diffusion coefficients for axially symmetric anisotro-
ic tumbling. © 1999 Academic Press

Key Words: backbone dynamics; rotational correlation time;
nisotropy; Monte Carlo; multiple fields.

INTRODUCTION

Dynamics play a significant role in the biological functio
f proteins and other macromolecules (1–3), and the sensitivit
f NMR to motions experienced by nuclear spins has m
MR a powerful tool for the study of macromolecular dyna

cs (4, 5). In particular, the dependence of relaxation rate
he spectral densityJ(v) of the motion for various relaxatio
echanisms is well known (4, 6, 7), allowing straightforward
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rediction of the heteronuclear relaxation rates given a kn
dge ofJ(v). However, the inverse problem of learning ab

he motions from a knowledge of the relaxation rates is m
ore difficult (8, 9). Although it is possible to directly estima

(v) based on relaxation data (10–12), most analyses of NM
elaxation data assume some functional form forJ(v), the
djustable parameters of which have some intuitive phy
eaning. The formalism proposed by Lipari and Szabo, kn
s the “model-free” approach since it was developed wit
ny assumptions of a detailed physical model (13, 14), has
roved to be extremely popular for the analysis of N
elaxation data (5, 15) and will likely remain ade factostan-
ard method because of its simplicity.
The original form of the Lipari–Szabo formalism contains

djustable parameter for the overall tumbling of the macro
cule in solution as well as two parameters which describ
patial restriction and timescale of the local dynamics
iven residue. It is clear that estimation of these param
sing the traditional three relaxation measurements (R1, R2,
nd NOE at one magnetic field strength) is dangerously

o being mathematically underdetermined, particularly
hese nonlinear models. In practice, most current implem
ions of the Lipari–Szabo formalism estimate the global t
ling parameter independently at the start of the analysis

hen use that value to estimate the local dynamical param
hese methods involve assumptions about the timescales

nternal motions and their distribution in the protein, which
ead to significant errors in estimates of their values and
ertainties. This is especially problematic as there exist s
orrelations between the local and global parameter estim
nd this can lead to a propagation of errors in the estimati

he global parameters into the local parameters.
Furthermore, the Lipari–Szabo formalism has been exte

n various ways, increasing the potential number of unkn
ocal dynamical parameters from 2 to 5 (7). Clearly, it is no

athematically possible to fit all of these parameters u
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409DYNAMIC PARAMETERS FROM NMR RELAXATION DATA
hree relaxation measurements. Therefore, existing an
ethods select a subset of three or fewer of the pos
arameters which adequately fit the data. Generally, on
ingle such subset is selected, even though the data m
qually well fit by different models with different ranges
otional parameters, or may in fact result from a com
otion requiring more than three motional parameters fo

omplete description.
One way in which these shortcomings can be avoided

he use of more relaxation measurements. In fact, recent s
f protein dynamics by NMR relaxation are making increa
se of relaxation data collected at two magnetic field stren
e.g., (16–20)). Since the implementations of the Lipari–Sza
ormalism currently in use were developed when the mea
ent of only three data was routine, it is not clear that they
aking the most efficient use of all of the available informa

n this larger amount of data. Furthermore, new experim
ased on cross-correlated relaxation (21–26) and rotating

rame relaxation dispersion (27–30) are being developed a
efined, and it would be desirable to have a general forma
hich would allow the unified analysis of data from su
xperiments. Also, the need for more quantitatively reli
odel-free parameter estimation has become imperative

hat the interpretation of model-free parameters has m
eyond its original use as a qualitative description of back
ynamics to more quantitative applications such as the es

ion of thermodynamic parameters (31–33) and the analysis o
hanges in dynamics due to ligand binding and complex
ation (5).
In this paper, we present a novel approach to the estimat

ynamical parameters based on products of Bayesian ma
robability densities which takes full advantage of the informa
ontent of relaxation data collected at multiple fields, is gen
nough to allow the incorporation of data from novel relaxa
xperiments currently being developed, and avoids the prob

nherent in the “traditional” model-selection approaches curre
n use. Previously, Jinet al. (34, 35) described how tradition
nalysis methods could seriously underestimate the uncerta

n the extracted model-free parameters, and proposed a gra
ethod for the analysis of NMR relaxation data. However,
nalysis method could only be applied to the simplest form o
ipari–Szabo formalism and assumed that the global tum
orrelation time was knowna priori. The approach presented h
an be viewed as a natural generalization of the graphical an
ethod and allows the estimation of the global tumbling cor

ion time and the use of the full Lipari–Szabo formalism, w
lso retaining the ability to accurately characterize the unce

ies in the extracted model-free parameters.

THEORY

In the Lipari–Szabo model-free formalism, it is assumed
he total time-correlation functionC(t) is separable into
sis
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roduct of factors which depend only on the overall motion
he internal motion, respectively:

C~t! 5 CO~t!CI~t!. [1]

his is true if the overall tumbling is isotropic and is unco
ated with the internal motion (13). If the overall tumbling is
ndeed isotropic, thenCO(t) is given by

CO~t! 5
1

5
expS2

t

tm
D , [2]

heretm is the rotational correlation time. Furthermore, i
ssumed that the correlation function for the internal mo
an be approximated by a single decaying exponential w
ime constant ofte and decays to a value ofS2 as t 3 `:

CI~t! 5 S2 1 ~1 2 S2!expS2
t

te
D . [3]

hus, in the Lipari–Szabo formalism,

J~v! 5 2 E
0

`

cos~vt!CO~t!CI~t!dt

5
2

5F S2tm

1 1 v 2t m
2 1

~1 2 S2!t

1 1 v 2t 2G , [4]

heret21 5 te
21 1 tm

21. The generalized order parametersS2

an be interpreted as a measure of the spatial restriction
nternal motion, and the effective correlation timete as a

easure of the timescale of the internal motion (13). In the
ase of an internuclear vector oriented at an angleu with
espect to the symmetry axis of a molecule undergoing ax
ymmetric anisotropic diffusion with tumbling parametersD \

ndD', Schurret al. (36) have established conditions un
hich J(v) can be written in the form

J~v! 5
2

5 O
j50

2

AjF S2t j

1 1 v 2t j
2 1

~1 2 S2!t9j
1 1 v 2t9j

2 G , [5]

hereA0 5 1
4 (3 cos2u 2 1)2, A1 5 3 cos2u sin2u, A2 5 3

4

in4u, t j
21 5 (6 2 j 2) D' 1 j 2D \, andt9j

21 5 t e
21 1 t j

21. This
quation is an extension of the well-known expression fo
pectral density of rigidly tumbling anisotropic ellipsoid (37).
The commonly measured relaxation data for a15N–1H spin

air undergoing dipole–dipole and chemical shift anisotr
CSA) relaxation in the absence of cross-correlation can
e computed using the well-known expressions
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R1 5
d2

4
@ J~vH 2 vN! 1 3J~vN!

1 6J~vH 1 vN!] 1
D 2v N

2

3
J~vN! [6]

R2 5
d2

8
@4J~0! 1 J~vH 2 vN! 1 3J~vN! 1 6J~vH!

1 6 J(vH 1 vN!] 1
D 2v N

2

18

3 @4J~0! 1 3J~vN!# 1 v N
2Fex [7]

nd

NOE5 1 1 SgH

gN
D d2

4R1
@6J~vH 1 vN! 2 J~vH 2 vN!#,

[8]

hered 5 gHgNhm0/8p2r NH
3 , D is the 15N CSA, andFex is the

eld-independent portion of the contribution toR2 due to
hemical exchange. We should emphasize that the Bay
ormalism described below is in no way limited to the anal
f 15N relaxation data, or to the Lipari–Szabo formalism,
an make use of other models forJ(v) and can be easi
xtended to make use of other relaxation data.
It should be made clear that the validity of Eq. [4] depe

nly on the assumptions mentioned above, namely, tha
verall tumbling is isotropic and stochastically uncorrela
ith the internal motion, and that the internal motion is w
pproximated by a single decaying exponential. Despite
lar misconceptions, the derivation of Eq. [4] by Lipari a
zabo makes no assumption about the timescale of the in
otion, and for isotropic overall tumbling it is valid forany

alue of te, including te $ tm, although the estimation ofte

alues in that regime becomes difficult and requires extre
recise data (35). The origin of this misconception appears
e the inclusion by Lipari and Szabo of simplifications of th
ain result (13, Eqs. [35]–[36]) which are only valid ifte !

m, as well as their discussion of the difficulties which aris
here are multiple internal motions on a timescale close to
verall tumbling. However, in the absence of such mult

nternal motions, Eq. [4] is valid for any timescale motion
ong as its correlation function can be well approximated
ingle decaying exponential. The effect of slow motions in
ase of anisotropic tumbling is less straightforward and wi
onsidered below.
It has been observed that not all macromolecular N

elaxation data can be fit well to the simple Lipari–Sz
pectral densities. In particular, it is sometimes necessa
ccount for contributions to the transverse relaxation ratR2

ue to chemical exchange effects by adding a phenomen
cal R term to the predictedR . This effect can be put o
ex 2
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omewhat firmer footing through its quadratic dependenc
he spectrometer frequency, as indicated in Eq. [7], w

ex 5 vN
2Fex (38, 39), through the observation of the R

eld-strength dependence of rotating-frame relaxation (27–30),
r through the dependence of the apparentR2 on the length o

he CPMG delay (20). Furthermore, it is occasionally nec
ary to invoke motion on two widely-separated time scale
dequately fit the data, resulting in the so-called “exten
odel-free” spectral density of Cloreet al. (40),

J~v! 5
2

5
Sf

2F S2tm

1 1 v 2t m
2 1

~1 2 S2!t

1 1 v 2t 2G , [9]

hereS2 is the order parameter for the slow motion,Sf
2 is the

rder parameter for the fast motion, andte is the effective
orrelation time for the slow motion (the fast motion is
umed to be in the extreme narrowing limit). It should be n
hat Eq. [9] departs from conventional notation in orde
mphasize its relationship with the original Lipari–Szabo s

ral density of Eq. [4].
The current standard implementations of the Lipari–Sz

pproach (41–43) share the following overall strategy: (1) t
orrelation time for overall tumbling (tm) is estimated from
alues of the ratioR2/R1 for a selected subset of the residu
2) nonlinear least-squares fits to the observed relaxation
re performed using various subsets of the possible regre
ariables (Table 1), (3) model-selection criteria are use
ecide which choice of regression variables is appropriat
ach residue, and (4) the value oftm may be re-optimized usin

he selected models. The uncertainties in all of the estim
arameters are then determined by classical Monte Carlo
nalysis. The use of theR2/R1 ratio to estimate the correlatio

ime for overall tumbling in the context of the Lipari–Sza
ormalism was first proposed by Kayet al. (44) in their
nalysis of15N relaxation data from staphylococcal nuclea
or the subset of residues which have motions only in
xtreme narrowing limit (i.e. residues which satisfy mode

he ratioR2/R1 will be independent ofS2 and therefore wil
epend only ontm. This is due to the fact that bothR1 andR2

re linear functions ofJ(v), andJ(v) is proportional toS2 if
e 5 0 (Eqs. [4], [6], and [7]). Based on the experiment
easured NOE values for staphylococcal nuclease, Kayet al.

TABLE 1
Nomenclature for Subsets of Regression Variables

Model Regression variables

1 S2 (t e 5 0, Rex 5 0, Sf
2 5 1)

2 S2, t e(Rex 5 0, Sf
2 5 1)

3 S2, Rex(t e 5 0, Sf
2 5 1)

4 S2, t e, Rex(Sf
2 5 1)

5 S2, t e, Sf
2(Rex 5 0)
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411DYNAMIC PARAMETERS FROM NMR RELAXATION DATA
44) pointed out that the secondte-containing term of Eq. [4
ould be neglected after eliminating obvious outlier resid
ith anomalousR2 values due to chemical exchange

esidues undergoing complex dynamics near the N- an
ermini.

This assumption is often valid for a subset of the residu
given protein. However, if it is assumed that the choic
odel is unknowna priori, then the use of theR2/R1 ratio to
stimatetm constitutes anad hocassumption, since we have
uarantee that removing the obvious outliers or residues
2/R1 outside of one standard deviation of the mean

emove all nonmodel 1 residues. Indeed, in some systems
ay be no residues which are accurately described by mo
his problem has recently been recognized in the litera

45, 46). In particular, Yaoet al. (46) have proposed an iter
ive scheme to determine a lower bound on the NOE valu
esidues to be used fortm determination, in an effort to exclud
esidues with significantte contributions. However, it is cle
rom the dependence of the NOE onte (Fig. 1a) that on
btains nearly identical NOE values both withte ' 0 as wel
s with te $ 4 ns (giventm 5 10 ns). Thus, one cann
efinitively exclude the presence of largete contributions on

he basis of the magnitude of the NOE. Furthermore, it is c
hat the presence of such largete contributions will reduce th
alue ofR /R , causingt to be underestimated (see Fig. 1

FIG. 1. The dependence of the NOE (a) andR2/R1 (b) on te, calculated
sing Eqs. [4]–[7] assuming a spectrometer1H frequency of 600 MHz, a

sotropic rotational correlation time of 10 ns, andS2 values of 0.8 (solid line
.7 (dashed line), and 0.6 (dot-dashed line).
2 1 m
s
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uch inaccurate estimates oftm can have significant effects
he model selection, as has been observed in the analy
rotein15N relaxation data. In our experience, changes intm of
10% are sufficient to cause the appearance or disappea
f Rex terms, as well as other changes in the “best fit” mo
e.g., Table 3 of Li and Montelione (47)). In particular, the
nderestimation oftm can lead to the appearance of inaccu
ex terms (see below).
The combined effect oftm uncertainty and model selecti

an be even more insidious. For example, if alltm values in a
0% range as described above were in fact consistent wi
ata, then one would not be able to decide conclus
hether the data for a given residue was better fit by mod
r model 3, since different values oftm in that range woul

ead to a different inference about the presence of an exch
ontribution. It is clear that in such a situation the uncerta
n tm would be propagated into an uncertainty in the mo
hoice, and therefore the selection of a single “best-fit” m
an result in the underestimation of the uncertainty in
odel-free parameters. Such model-selection uncertainty

onsidered in current analysis methods. This may be due
act that the concept of model uncertainty, although intuitiv
easonable, does not arise naturally in classical statistics

STATISTICAL BACKGROUND AND
COMPUTATIONAL METHOD

As was alluded to in the Introduction, the problems aris
rom model selection and the estimation of the global tumb
arameters could be avoided by the measurement of a
ient number of relaxation data and fitting to the most gen
orm of the Lipari–Szabo model. In principle, such data a
sis could proceed along either a classical or a Baye
tatistical route. For example, if one wished to treat the p
em classically (i.e., where the data are considered to be
om variables and the parameters are unknown states of
48)), one could easily obtain the maximum likelihood e
ates for the local dynamical parameters for each res

onditional on some value fortm. If one assumes that th
ncertainty in each data point is normally distributed, then
aximum likelihood estimate is simply the parameter va
hich minimize the weighted sum of squared residuals

espect to the data. One could then find the value oftm which
imultaneously minimizes the total of the conditional sum
quared residuals for all residues using a one-dimens
ptimization algorithm (49).
The uncertainties in the estimated dynamical param

including tm) could then be estimated by performing a c
ical Monte Carlo error analysis procedure, where one w
epeat this optimization procedure for many random data
enerated using the assumed noise distribution. However,
m is aglobal adjustable parameter, one can no longer per
he error analysis residue by residue. Instead, one would
o generate data sets corresponding toall of the relaxation dat
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412 ANDREC, MONTELIONE, AND LEVY
or the entire protein. A large number of Monte Carlo sam
ould be required in order to adequately cover this very
imensional parameter space, making a purely classica
roach very computationally demanding.
A Bayesian version of this strategy is not only more c

utationally efficient, but also provides more insight into
nformation content of the data. Since Bayesian statis

ethodology allows us to speak of the probability of a pa
lar set of parameter values given the data (50, 51), we save a
onsiderable amount of computational time by perform
onte Carlo sampling in theparameterspace instead of th
ata space. Such sampling algorithms do not require repe
onlinear optimizations, and therefore avoid converge
roblems which sometimes arise with such algorithms.

hermore, we can construct the overall solution based o
ontributions from individual residues using the well-es
ished methods of probability theory. This allows us to m
asily assess the relative information content of the dat
ach residue and more easily identify outliers due to syste
rrors in the data or model inadequacy.
A Bayesian version of the classical algorithm propo

bove would begin by estimating the “local” joint probabi
ensityP(S2, t e, Rex, Sf

2, tmuRi) for all of the parameters (
his case for the “extended model-free” spectral density) b
n the relaxation dataRi for residuei . By fitting to the mos
eneral form of this set of nested models, we avoid making

mplicit model selections. Obviously, we must have at lea
any data points as adjustable parameters if this local
robability density is to provide an informative parame
stimate, but due to experimental uncertainties and the no
arities of the model function it is desirable that the fit
verdetermined. In this paper, we make use ofR1, R2, and
OE data collected at multiple magnetic field strengths
ractice, we have found that six data points collected at s
iently different fields (e.g., 400 and 600, or 500 and 800 M
rovide good local parameter estimates, but that as few a
easurements (R1, R2, NOE,h xy, andh z) at one field strengt

25) is also sufficient.
We can enforce the condition thattm is a global parametera

osterioriby “integrating out” all of the local parameters, a
ultiplying the resulting marginal probability densit
(tmuRi) for all residuesi . It is interesting to note that som
arlier applications of the Lipari–Szabo formalism to pro
ynamics have in fact proceeded in precisely this manne
ttempting to treattm as an adjustable parameter on eq

ooting with S2 andte (52–55), while others have made use
he sum of squared residuals surface or other graphical m
ds (56, 57). This work extends these approaches by ma

ull use of the information contained in the weighted sum
quared residuals surface, which is simply the negative o
ogarithm of the Bayesian posterior probability under a
orm prior (see Eqs. [10]; [11] below). By recognizing this fa
e can bring to bear the full power of probability theory
ake statistical inferences about the global and local par
s
h
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ers in a way that is both computationally efficient and prov
onsiderable insight into the information content of the da
In this paper, we test this strategy for the extraction

ynamical information from NMR relaxation data. For s
licity, let us first consider the original Lipari–Szabo spec
ensity (Eq. [4]). Using synthetic15N relaxation data, w
enerated Monte Carlo samples from the joint posterior p
bility density calculated using the Bayes theorem from

ikelihood of the data and the prior probability of the para
ters:

P~S2, te, Rex, tmuRi!

} P~RiuS2, te, Rex, tm! P~S2, te, Rex, tm!. [10]

he likelihood of observing the data setRi for a given residu
given that the underlying dynamic processes are describ

he given values ofS2, t e, Rex, andtm is given by

P~RiuS2, te, Rex, tm!

5 P
j51

n 1

Î2ps ij
2 expF2 ~Rij 2 Rij

~calc!! 2

2s ij
2 G , [11]

heren is the number of relaxation data per residue,Rij is the
th “observed” relaxation value (i.e.R1, R2, or NOE) for the
th residue,Rij

(calc) is the j th relaxation parameter calculat
sing the given values ofS2, t e, Rex, and tm, and s ij is the
ncertainty in thej th “observed” relaxation value for thei th
esidue. The prior probabilityP(S2, t e, Rex, tm) was taken to b
qual to one in the region 0, S2 , 1, t e $ 0, Rex $ 0, tm .
, and zero outside of this region. In principle, this prior co

nclude information obtained from other sources, such asRex

nformation obtained from rotating frame relaxation meas
ents (27–30). Equation [10] contains a proportionality si

ince we have not normalized the posterior probability
ividing by the marginal likelihood of the data (49, 50). The
onte Carlo was performed using the Metropolis algori
ith an iteratively adjusted proposal distribution using
Rambosoftware package as described in detail by Andrec
restegard (58). For purposes of simulation, we have cho
ij to be 5% ofRij for all of the calculations described in t

ollowing sections. Based on these Monte Carlo samples
an obtain an estimate of the marginal density oftm for the i th
esidue

P~tmuRi! 5 E P~S2, te, Rex, tmuRi!dS2dtedRex [12]

y estimating the one-dimensional probability density ba
nly on the tm coordinates of the Monte Carlo samp
59, 60). Analogous procedures could be used for both axi
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413DYNAMIC PARAMETERS FROM NMR RELAXATION DATA
ymmetric anisotropic diffusion (Eq. [5]) or the “extend
odel-free” spectral density (Eq. [9]). In the former case, t
re two global parameters (D \ and D'), and therefore th
equired marginal densities are bivariate.

RESULTS AND DISCUSSION

1. Isotropic tumbling using the original Lipari–Szabo sp
ral density. Synthetic 15N relaxation data at two fie
trengths (500 and 800 MHz) were generated using the pa
ters summarized in Table 2. In particular, since largete values
an severely limit the precision of Lipari–Szabo param
stimates (34, 35), we have includedte values in the 1–2 n
ange in order to test the robustness of our methodology in
egime. These data were then used to generate Monte
amples from the “local” joint probability densities as
cribed above. The resulting marginal probability dens
(tmuRi) are shown in Fig. 2. It is apparent from the widths

he distributions that these “local”tm estimates are of qui
ariable precision, with some residues (such as 1, 3, an
aving fairly narrow distributions and thereby providing c
iderable information regarding the value oftm, while others
such as residue 5) are quite broad and provide very littltm

nformation. This insight into the relative information cont
f the data for various residues with respect to the estim
f tm is something which would not be readily available fr

he classical parameter estimation procedure outlined ab
The resulting “local”tm distributions in several cases do

ave their modes at thetm value (10.0 ns) used to generate
ynthetic data, particularly for residues with substantiate

ontributions (such as residue 2), although in all cases
correct” tm value is near the maximum of the posterior pr
bility density. The fact that the modes are not at 10.0 ns i
nexpected, since Eq. [4] represents a highly nonlinear m
urthermore, the modes ofP(S2, t , R , t uR ) andP(t uR )

TAB
Parameters and Synthetic Data

1 2

S2 0.84 0.64
te (ns) 1.0 2.3
Rex (s21)b 0.0 0.0
R1 (s21) @ 500 MHz 1.79 2.15
R1 (s21) @ 800 MHz 1.10 1.49
R2 (s21) @ 500 MHz 11.79 10.10
R2 (s21) @ 800 MHz 14.50 12.29
NOE @ 500 MHz 0.549 0.602
NOE @ 800 MHz 0.695 0.771

a The syntheticR1, R2, and NOE relaxation data were calculated using
n the table.

b We defineRex to be the value ofvN
2Fex at a proton frequency of 500 M
e ex m i m i
e

-

m-

r

is
rlo

-
s
f

4)
-

t
n

e.

he
-
ot
el.

eed not occur at the same value oftm if the former contain
ignificant nonlinear correlations (58). As expected, howeve
heP(tmuRi) do converge to sharp distributions centered a
correct” value of 10.0 ns as the uncertaintiess ij approach zer
data not shown).

Sincetm is a global parameter, it must have the same v
or all residues. We can impose this constraint by taking
roduct ofP(tmuRi) over all N residues:

P~tmuR! } P
i51

N

P~tmuRi!. [13]

he probability density oftm obtained by multiplying th
ernel density estimate points of Fig. 2 is shown in Fig
hus,P(tmuR) constitutes the estimate of the value oftm and

ts uncertainty given the experimental data. Again, becau
he nonlinearities in the model, the mode of the resu
istribution need not occur at 10.0 ns. However, the resul

ndicate that atm of 10.0 ns is highly probable.
Although this is not a feature of the synthetic data used h

t should be recognized that systematic error in the relax
easurements, more complex internal motions, or rotat
nisotropy could result inP(tmuRi) distributions which ar
utually inconsistent. Such inconsistency could be used

ndicator of such effects and is another example of insight
he data that could not have been easily obtained using cla
arameter estimation methods. In practice, one could co

hat an inconsistency intm is due to anisotropy by observing
orrelation between thetm values and the relative orientatio
f the amide bond vectors as determined from suitable X
rystal or NMR solution structures (36). However, it is also
ossible that systematic errors in relaxation measuremen

ll-determined relative amide bond orientations may not re

2
d for the Determination of tm

a

Residue number

3 4 5 6

0.71 0.79 0.62 0.82
0.0 0.5 2.4 1.5
1.0 0.5 3.1 1.2
1.24 1.70 2.18 1.87
0.65 1.02 1.52 1.18

10.65 11.57 13.04 12.88
14.47 14.86 20.02 17.43

0.805 0.276 0.605 0.616
0.855 0.425 0.774 0.754

s. [4], [5], [6], and [7] with atm of 10.0 ns and the values ofS2, t e, andRex listed

.
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414 ANDREC, MONTELIONE, AND LEVY
n a detectable deviation in the localtm estimates. In suc
ases, it may still be possible to detect such errors throu
esidual analysis in which the observed data is compared
istribution of data values back-calculated fromP(S2, t e, Rex,
muRi).
Once the local distributions for the tumbling parameter h

een constructed, they can then be used to determin

FIG. 2. The “local” marginal probability densitiesP(tmuRi) calculated us
ere calculated using a univariate Gaussian kernel density estimator (59) from
f 120,000 Monte Carlo samples were generated usingXRambo,of which ev

FIG. 3. The circles represent the products ofP(tmuRi) (Fig. 2) for i 5
, . . . , 6 evaluated attm increments of 0.08 ns. The solid line is

east-squares-fit Gaussian, having a mean of 9.86 ns and a standard d
f 0.33 ns.
a
he

e
the

robability density ofS2, t e, andRex for each residue. This
one by generating Monte Carlo samples from the “glo

oint density

P~S2, te, Rex, tmuR!

} P~S2, te, Rex, tmuRi!@P
jÞi

P~tmuRj!# [14]

or the local parameters of residuei , where the quantity i
quare brackets represents the information abouttm contained

n the otherN-1 residues. Since model selection in the tr
ional analysis procedure consists of determining whether
s a significantte or Rex contribution, we have plotted th
esults as bivariate marginal densities ofte andRex in Fig. 4. In
ll cases, the probability densities of the local parameter
uite well-determined. The precision of theRex estimate coul
e further improved by collecting additionalR2 data at a third
eld strength, if that is practical. It is clear that for residue
, and 6 most of the probability mass is located well away f
ither thete 5 0 or theRex 5 0 axes, confirming that they a
ell fit by model 4 (te Þ 0 andRex Þ 0). Residues 1 and 2, o

he other hand, have most of the probability mass lying a
ex 5 0 axis, but well separated from thete 5 0 axis, con
rming that they can be fit to model 2 (te Þ 0 andRex 5 0).
imilarly, residue 3 has most of its probability mass lying

the relaxation dataRi for each of the six residues shown in Table 2. The cu
nte Carlo samples using the “maximal smoothing” window width (60). A total
eighth sample was used for the probability density estimate.

tion
ing
Mo
ery
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415DYNAMIC PARAMETERS FROM NMR RELAXATION DATA
hete 5 0 axis, but away from theRex 5 0 axis, confirming tha
t is well fit by model 3 (te 5 0 andRex Þ 0). However, it is
lso clear that in all cases there is significant probab
ensity away from thete 5 0 andRex 5 0 axes. Therefore
ather than stating that a certain residue (e.g. residue
model 2,” one may wish to simply report thatRex is most
ikely less than 0.75 s21 and thatte lies between 0.5 and 1.5 n
uch upper and lower bounds can be estimated visua
etermined automatically from the Monte Carlo samples u
onparametric statistical methods (58, 61). Alternatively, one
ould also describe the results in terms of a mixture of tr
ional models, for example, 80% probability of model 2
0% probability of model 4. Although one could proceed a

he traditional approach and reestimate the local param
hile holdingte and/orRex fixed at zero, this is not necessa
nd may underestimate the true uncertainties by elimin
odel-choice uncertainty.

FIG. 4. Monte Carlo samples generated from the probability density
onte Carlo samples were generated, of which every eighth sample is sh
lane and is a representation of the marginal probability densityP(t e, RexuR)
y

is

or
g

i-

n
rs

g

2. Anisotropic axially symmetric tumbling.It has been
oted in the literature that the presence of anisotropic tum
an have insidious effects on the extracted motional param
f the data are fit using an isotropic model (36, 62–64). One

ethod that has been proposed for the identification of
ffects involves estimating a “local”tm independently for eac
esidue using the spectral density of Eq. [4] (36, 63), as we
ave done in Fig. 2. However, our approach can be e
xtended to directly estimateD \ and D' using Eq. [5] if we
ssume that the diffusion tensor orientation is known. It sh
e noted that the derivation of Eq. [5] by Schurret al. (36)
ssumes that the internal motions occur on a significantly f

ime scale than the overall tumbling. Although a rigor
actorization of the correlation function along the lines of
1] for anisotropic tumbling is not possible in general (13, 36),
e have found that Eq. [5] is able to estimateS2 to within 5%
ccuracy from synthetic data generated with the anisot

Eq. [14] usingXRambofor each of the six residues of Table 2. A total of 120,
n. Each panel corresponds to a projection of the Monte Carlo samples ote–Rex
of
ow

.
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416 ANDREC, MONTELIONE, AND LEVY
iffusion-in-a-cone model (13, 65, 66) with internal motiona
orrelation times in the range of 0# tcone # (3 D \)

21 in the
imit D \ @ D' (data not shown). These results show
nternal motional parameters extracted using Eq. [5] ca

eaningful even ifte is not much smaller than the correlat
imes for the overall tumbling. Therefore, as in the isotro
xample above, we have chosen to usete values of 1–2 ns i
rder to validate our formalism in this regime.
We proceeded in an analogous manner, using synthetic

or a protein with an anisotropic diffusion tensor (Table 3
ompute Monte Carlo samples from the joint densityP(S2, t e,
ex, D \, D'uRi , u ). The resulting bivariate marginal densit
(D \, D'uRi , u ) are shown in Fig. 5. If we impose t

TAB
Parameters and Synthetic Data Used

1 2

S2 0.84 0.64
te (ns) 1.0 2.3
Rex (s21)b 0.0 0.0
u 30° 70°
R1 (s21) @ 500 MHz 1.18 1.86
R1 (s21) @ 800 MHz 0.76 1.31
R2 (s21) @ 500 MHz 20.84 14.10
R2 (s21) @ 800 MHz 26.34 17.52
NOE @ 500 MHz 0.438 0.594
NOE @ 800 MHz 0.638 0.772

a The syntheticR1, R2, and NOE data were calculated using Eqs. [5],

e, Rex, andu listed in the table.
b We defineRex to be the value ofvN

2Fex at a proton frequency of 500 M

FIG. 5. Monte Carlo samples generated from the probability densityP(S2,

e, Rex, D \, D'uRi , u ) usingXRamboand relaxation dataRi for each of the
ix residues shown in Table 3. A total of 400,000 Monte Carlo samples
enerated for each residue, of which every eighth sample is shown. Each
orresponds to a projection of the Monte Carlo samples onto theD \–D' plane
nd is a representation of the marginal probability densityP(D , D uR , u ).
\ ' i
t
e

c

ata

onstraint thatD \ andD' must be equal for all residues, t
esulting global probability densityP(D \, D'uR, u ) is shown
n Fig. 6. It is clear that although the information content in
ata for each residue is insufficient to estimateD \ andD' with
dequate precision, the superposition of the information
ll residues affords a reasonably precise estimate which is
ccurate when compared to the values ofD \ andD' used to
enerate the synthetic data (0.016 ns21 and 0.008 ns21, respec

ively). It is interesting to note that the estimates ofD \ andD'

3
r the Determination of D| and D'

a

Residue number

3 4 5 6

0.71 0.79 0.62 0.82
0.0 0.5 2.4 1.5
1.0 0.5 3.1 1.2

50° 40° 35° 60°
0.81 1.16 1.77 1.44
0.42 0.73 1.27 0.94

16.31 18.93 19.36 18.55
21.89 24.51 28.28 24.87

0.814 0.047 0.596 0.578
0.858 0.263 0.776 0.739

[7], and [8] withD \ 5 0.016 ns21 andD' 5 0.008 ns21 and the values ofS2,

.

re
nel

FIG. 6. A density plot of the two-dimensional histogram obtained
inning the Monte Carlo samples fromP(S2, t e, Rex, D \, D'uRi , u ) shown in
ig. 5 and multiplying the resulting bin counts fori 5 1, . . . , 6. The resu

s an approximate representation of the global parameter estimateP(D \, D'uR,
). The dotted lines denote the values ofD \ and D' used to generate th
ynthetic data (Table 2), and the solid gray line corresponds toD \ 5 D' (i.e.,
sotropic tumbling).
LE
fo

[6],
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417DYNAMIC PARAMETERS FROM NMR RELAXATION DATA
re not independent, but are approximately linearly correl
urthermore, in this particular case the uncertainties inD \ and
' are large enough that one cannot unambiguously elim

he possibility of isotropic tumbling (Fig. 6), despite the f
hat the “true” anisotropy is quite large (D \/D' 5 2). The
nterpretation of relaxation data in terms of Bayesian pr
ility densities allows the use of products of marginal dens

o efficiently estimate globalD \ andD' values. This represen
significant improvement over classical statistical meth

nd circumvents the requirement for criteria which attemp
xclude residues which have internal motion outside of
xtreme narrowing limit (25, 62, 64, 67).

3. Isotropic tumbling using the “extended model-fre
pectral density. Although the application of our approach
he “extended model-free” spectral density (40) is in principle
dentical to the examples shown above, problems can ar
ractice because one cannot unambiguously estimate valu
oth S2 andSf

2 aste approaches zero, sinceSf
2 loses physica

eaning in that limit. This is not a substantial problem, h
ver, sinceP(tmuRi) can still be correctly estimated if th
odel is reparametrized so that one estimates the productS2Sf

2.
t should be noted that this is not a shortcoming of our form
sm, but rather is a reflection of the underlying physics.
emonstrate the feasibility of our approach for handling
xtended model, we show the results obtained for the es

FIG. 7. Monte Carlo samples generated from the probability densityP(S
esidue.R1, R2, and NOE data were generated at spectrometer1H frequenci

0.0 s21, Sf
2 5 0.87, andtm 5 10.0 ns (R1 5 2.08, 1.26, 0.95 s21; R2 5

Hz, respectively). A 5% relative error in each relaxation value was ass
ample is shown. Each panel corresponds to a projection of the full se
d.

te
t

-
s

s
o
e

in
for

-

l-
o
e
a-

ion of P(S2, t e, Rex, Sf
2, tmuRi) for one set of synthetic da

enerated using ate value of 1.0 ns (at atm of 10 ns) (Fig. 7)
ince in this casete is sufficiently greater than zero, it is n
ecessary to reparameterize the model. The resulting ma
ensity oftm (which corresponds to the width of the “cloud”

he left-most column of plots in Fig. 7) is quite narro
onsidering that it is derived from relaxation data for only
esidue. A typical protein will likely have a number of resid
hich will allow similarly narrowtm estimates. As before,

he resultingP(tmuRi) distributions have modes at nearly eq
alues oftm, then the globaltm estimateP(tmuR) will be even
arrower. Correspondingly, if the modes do not occur at ne
qual values oftm, then this may be evidence for system
xperimental error or the violation of the assumption o
ingle global dynamic parameter.
The projections of the five-dimensional probability distri

ion onto planes corresponding to each of the 10 pos
rthogonal two-dimensional “viewpoints” shown in Fig. 7 p
ides a clear way to visualize the correlations among
odel-free parameters. First of all, it is clear thattm andRex are

inearly correlated, resulting in small nonzeroRex contributions
t smaller values oftm. This is a clear example of the mod
ncertainty and correlations among the local and globa
ameter estimates discussed above. Furthermore, it is
pparent thatt and S2 show a positive and negative line

e, Rex, Sf
2, tmuR) with XRambousing synthetic data for a single hypothet

f 400, 600, and 800 MHz using the parametersS2 5 0.84, t e 5 1.0 ns,Rex

2, 10.85, 12.61 s21; and NOE5 0.497, 0.601, 0.695 for 400, 600, and 8
ed. A total of 120,000 Monte Carlo samples were generated, of which ehth
Monte Carlo samples onto a plane corresponding to each pair of para
2, t
es o
9.9
um

t of
e



c he
u e
v -
i
b nt
w e
c ll b
fi
c in
a
a s-
t
v
a

ion
m at
o th
n os
g an
t od
u d w
c esu
o th
e a
n

-
s ata,
w e
p
t the
n dis-
e d by
N nd
6 ata)
w pari–
S e
c per
r e
d ll
r ithin
p ,
R of
r e
c is
r that
t
S er,
e t
v f the
a

I s
w
r

418 ANDREC, MONTELIONE, AND LEVY
orrelation, respectively, withtm. Thus, by underestimating t
ncertainty intm, either by artificially fixing its value at th
alue determined fromR2/R1 or by forcingRex 5 0 by choos
ng regression model 5, the true uncertainty inte andS2 would
e significantly underestimated. This is particularly appare
e consider the dotted line attm 5 9.0 ns. In this case, w
annot obtain a good fit to the data unless we allow a sma
nite Rex contribution of 0.5 s21. Had we forcedRex 5 0 by
hoosing regression model 5, we would have been misled
smaller uncertainty fortm, sincetm values less than'9.0 ns

re inconsistent withRex 5 0. Also, we would have undere
imated the uncertainties inS2 andte by partially eliminating
alues ofte , 1.0 ns andS2 . 0.85 due to thecorrelations
mong the dynamical parameters.
Based on these observations, it is clear that the tradit
odel-selection strategy can lead to a serious underestim
f the uncertainties in the dynamical parameters due to
eglect of ambiguities in model choice. By fitting to the m
eneral model, one can avoid explicit model selection

hereby avoid this problem. Furthermore, the concept of m
ncertainty arises quite naturally in Bayesian statistics, an
an use the concept of model uncertainty to describe the r
f such a general fit. In fact, Bayesian methods allow
xtension of this concept to situations in which the models
ot nested and no such “most general model” exists (51).

FIG. 8. The local marginal probability densitiesP(tmuRi) calculated usin
nman and D. J. Weber, unpublished data). A total of 19,500 Monte Carlo
ere calculated as in Fig. 2. Data for residues 7, 8, 11, 16, and 18 were

esidues 12 and 15 were unbounded with respect tote and were eliminated
if

ut

to

al
ion
e

t
d
el
e
lts
e
re

4. Application to experimental data.In order to demon
trate the applicability of our method using experimental d
e have performed a localtm analysis for the first helix of th
rotein S100B(bb). S100B(bb) is a dimeric Ca21-binding pro-

ein (91 residues/monomer) which has been implicated in
europathologies of Down’s syndrome and Alzheimer’s
ase (68), and the structure of which has been determine
MR methods (69). R1, R2, and NOE data obtained at 400 a
00 MHz (K. G. Inman and D. J. Weber, unpublished d
ere analyzed as described above using the original Li
zabo spectral density includingRex (Eqs. [4] and [12]). Th
alculation required approximately 60 s of CPU time
esidue on an SGI R10000 computer. The results for thtm

istributions in helix 1 of S100B(bb) are shown in Fig. 8. A
emaining local dynamical parameter estimates were w
hysically reasonable ranges (S2 ' 0.8–0.95,t e , 300 ps
ex , 1.5 s21 at 400 MHz). With the possible exception

esidues 3 and 17, the marginaltm distributions are quit
onsistent, with an apparenttm of approximately 8 ns, which
easonable for a 182-residue protein. It should be noted
his apparenttm need not correspond to a globaltm, since
100B(bb) may have nonnegligible anisotropy. Howev
ven for a significantly anisotropic protein, the apparentm

alues in a given helix should be nearly equal, since all o
mide vectors point in approximately the same direction (64).

e relaxation dataRi for helix 1 (residues 2–18) of the protein S100B(bb) (K. G.
ples were generated for each residue using a “slicing” algorithm (71), and the curve

available due to spectral overlap, and the joint distributionsP(S2, t e, Rex, tmuRi) for
m the analysis.
g th
sam
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419DYNAMIC PARAMETERS FROM NMR RELAXATION DATA
he small deviations that are seen, such as those for resid
nd 17, may be due to experimental errors in the relax
ata or more complex dynamics at the ends of the h
imilar consistent behavior is observed for the other helic

he protein. A detailed analysis of the global and local dyn
cs of S100B(bb) is currently under way using the metho
escribed here, as well as using traditional methods bas
odel selection. The results of these analyses will be pres
lsewhere.

CONCLUSIONS

We have shown that the use of a Bayesian statistica
roach based on the product of marginal densities for
stimation of dynamical parameters from relaxation da
traightforward, powerful, and avoids the additional assu
ions which are necessary in the standard procedures. In
uch assumptions were made necessary by the lack of suf
ata to fit the most general form of the Lipari–Szabo spe
ensity. In this paper, we have expanded the data se

ncluding theR1, R2, and NOE data collected using multip
agnetic field strengths. The collection of relaxation dat
ultiple spectrometer frequencies does represent an add

nvestment of time and resources for the spectroscopist
elieve, however, that such an investment will have substa
enefits for the detailed quantitative interpretation in term
ipari–Szabo dynamical parameters. It should be noted tha
se of multiple field strengths isnot a requirement for th
pplication of this formalism. Rather, the product of marg
ensities formalism provides a natural and consistent mea
ombining the information contained in data obtained f
ultiple sources or methods, such as rotating-frame or c

orrelated relaxation measurements. Furthermore, we
lso incorporate relaxation data from other nuclei, such as13Ca

elaxation, in order to further improve the global param
stimates (70). This formalism in fact could be used for a
onlinear parameter estimation problem with a high-dim
ional parameter space that can be separated into low-d
ional subspaces which are independent except for a
umber of global parameters.
We have shown that by collecting more data the traditi
odel selection and global parameter estimation method

heir inherent assumptions can be avoided, allowing the
ble estimation of the uncertainties in the global tumb
arameters. Although one could construct classical stati
arameter estimation methods which avoid these assump
e show that a Bayesian method is computationally effic
nd provides more insight into the information content of
ata. The reliable estimation of the uncertainties in the gl
arameters is crucial, since there are significant correla
mong the global and local parameters, and the estimati

he uncertainties in the local parameters are necessar
uantitative applications of the Lipari–Szabo formalism. W

s in progress to apply the product of marginal densities
s 3
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alism described here to more experimental data and to
lement these methods in a practical, user-friendly soft
ackage for use by the NMR spectroscopy community.

ACKNOWLEDGMENTS

We thank D. Monleon, R. Tejero, and D. Jin for helpful discussi
articularly in the early stages of this work. We are very grateful to K

nman and D. J. Weber of the University of Maryland School of Medicine
indly allowing us to use their unpublished relaxation data. This researc
upported by the National Institutes of Health (GM-50733 to GTM
M-30580 to RML). Support for computing facilities was provided by a g

rom the W. M. Keck Foundation.

REFERENCES

1. J. A. McCammon and S. Harvey, “Dynamics of Proteins and Nu-
cleic Acids,” Cambridge Univ. Press, Cambridge, UK (1987).

2. C. L. Brooks, M. Karplus, and B. M. Pettit, “Proteins: A Theoretical
Perspective of Dynamics, Structure, and Thermodynamics,” Ad-
vances in Chemical Physics, Vol. 71, Wiley, New York (1988).

3. O. Jardetzky, Protein dynamics and conformational transitions in
allosteric proteins, Prog. Biophys. Mol. Biol. 65, 171–219 (1996).

4. G. Wagner, S. Hyberts, and J. W. Peng, Study of protein dynamics
by NMR, in “NMR of Proteins” (G. M. Clore and A. M. Gronenborn,
Eds.), pp. 220–257, Macmillan, London (1993).

5. A. G. Palmer, III, Probing molecular motions by NMR, Curr. Opinion
Struct. Biol. 7, 732–737 (1997).

6. A. Abragam, “Principles of Nuclear Magnetism,” Oxford Press,
1961.

7. A. G. Palmer, III, J. Williams, and A. McDermott, Nuclear magnetic
resonance studies of biopolymer dynamics, J. Phys. Chem. 100,
13,293–13,310 (1996).

8. R. M. Levy, M. Karplus, and P. G. Wolynes, NMR relaxation pa-
rameters in molecules with internal motion: Exact Langevin trajec-
tory results compared with simplified relaxation models, J. Am.
Chem. Soc. 103, 5998–6011 (1981).

9. R. M. Levy and J. Keepers, Computer simulations of protein dy-
namics: Theory and experiment, Comm. Mol. Cell. Biophys. 3,
273–295 (1986).

0. J. W. Peng and G. Wagner, Mapping of spectral density functions
using heteronuclear NMR relaxation measurements, J. Magn.
Reson. 98, 308–332 (1992).

1. R. Ishima and K. Nagayama, Protein backbone dynamics revealed
by quasi spectral density function analysis of amide N-15 nuclei,
Biochemistry 34, 3162–3171 (1995).

2. N. A. Farrow, O. Zhang, A. Szabo, D. A. Torchia, and L. E. Kay,
Spectral density function mapping using 15N relaxation data exclu-
sively, J. Biomol. NMR 6, 153–162 (1995).

3. G. Lipari and A. Szabo, Model-free approach to the interpretation
of nuclear magnetic resonance relaxation in macromolecules. 1.
Theory and range of validity, J. Am. Chem. Soc. 104, 4546–4559
(1982).

4. G. Lipari and A. Szabo, Model-free approach to the interpretation
of nuclear magnetic resonance relaxation in macromolecules. 2.
Analysis of experimental results, J. Am. Chem. Soc. 104, 4559–
4570 (1982).

5. K. T. Dayie, G. Wagner, and J.-F. Lefèvre, Theory and practice of
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4. J. Engelke and H. Rüterjans, Dynamics of beta-CH and beta-CH2
groups of amino acid side chains in proteins, J. Biomol. NMR 11,
165–183 (1998).

5. C. D. Kroenke, J. P. Loria, L. K. Lee, M. Rance, and A. G. Palmer,
III, Longitudinal and transverse 1H-15N dipolar/15N chemical shift
anisotropy relaxation interference: Unambiguous determination of
rotational diffusion tensors and chemical exchange effects in bio-
logical macromolecules, J. Am. Chem. Soc. 120, 7905–7915
(1998).

6. B. Brutscher, N. R. Skrynnikov, T. Bremi, R. Brüschweiler, and R. R.
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